

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: BACHELOR OF COMPUTER SCIENCE							
QUALIFICATION CODE: 07BOCS LEVEL: 6							
COURSE CODE: ASP610S/611S	COURSE NAME: APPLIED STATISTICS & PROBABILITY FOR IT						
SESSION: JULY 2022	PAPER: THEORY						
DURATION: 3 HOURS	MARKS: 90						

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION								
EXAMINER:	MR A.J. ROUX							
MODERATOR:	MR E. MWAHI							

THIS QUESTION PAPER CONSISTS OF 5 PAGES

(Excluding Statistical Tables & Graph Paper)

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in blue or black ink.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

ATTACHMENTS

- 1. Statistical Tables (Z-tables)
 - 2. Graph Paper

Page 1 of 5

QUESTION 1 $\begin{bmatrix} 10 \times 2 = 20 \end{bmatrix}$

- 1.1. A population is:
 - a.) a number or measurement collected as a result of observation
 - b.) a subset of a population
 - c.) a characteristic of a population which is measurable
 - d.) a complete set of individuals, objects, or measurements having some common observable characteristics
 - e.) none of these
- 1.2. Inferential statistics
 - a.) refers to the process of drawing inferences about the sample based on the characteristics of the population
 - b.) is the same as descriptive statistics
 - c.) refers to the statistical methods used to draw inferences about a population based on sample information
 - d.) is the same as a census
 - e.) none of the above answers is correct.
- 1.3. For the hypothesis testing of μ when σ is known and the sample is large, the proper distribution to use is
 - a.) the z distribution
 - b.) the t distribution with n degrees of freedom
 - c.) the t distribution with n + 1 degrees of freedom
 - d.) the t distribution with n + 2 degrees of freedom
- **1.4**. In hypothesis testing, the t distribution is applicable only when
 - a.) the population has a mean of less than 30
 - b.) the sample standard deviation is used with a small sample size
 - c.) the variance of the population is known
 - d.) the standard deviation of the population is known
- 1.5. From a population that is not normally distributed and whose standard deviation is not known, a sample of 6 items is selected to develop a hypothesis test a claim about an unknown population μ .
 - a.) The z distribution can be used.
 - b.) The t distribution with 5 degrees of freedom must be used.
 - c.) The t distribution with 6 degrees of freedom must be used.
 - d.) The sample size must be increased.
- 1.6. A sample of 200 elements from a population is selected, and the standard deviation of the sample is computed. To test a claim about the unknown μ , the proper distribution to use is the
 - a.) z distribution

- b.) t distribution with 200 degrees of freedom
- c.) t distribution with 201 degrees of freedom
- d.) t distribution with 199 degrees of freedom
- 1.7. From a population that is normally distributed, a sample of 25 elements is selected and the standard deviation of the sample is computed. For testing an unknown of μ , the proper distribution to use is the
 - a.) z distribution
 - b.) t distribution with 25 degrees of freedom
 - c.) t distribution with 26 degrees of freedom
 - d.) t distribution with 24 degrees of freedom
- 1.8 Which of the following would be the correct hypotheses for testing the claim that the mean life of a battery for a cellular phone (while the phone is left on) is less than 24hours?
 - a.) $H_0: \mu = 24 \text{ vs } H_1: \mu < 24$
 - b.) $H_0: \mu = 24 \text{ vs } H_1: \mu \neq 24$
 - c.) $H_0: \mu \le 24 \text{ vs } H_1: \mu > 24$
 - d.) $H_0: \mu > 24 \text{ vs } H_1: \mu \ge 24$
- 1.9 In hypothesis testing, what is the function of a critical value that is taken from the tables?
 - a.) It is equal to the calculated statistic from the observed data.
 - b.) It is the point where the decision changes from reject to fail to reject.
 - c.) It is the centre of the distribution of X's.
 - d.) It is a point which is 1 standard deviation away from the mean.
- 1.10 A sample of size 35 with a mean of 15 is taken from a population which has a variance of 9. For testing the hypothesis μ = 18 against the alternative $\mu \neq$ 18 at the 0.10 level of significance, the critical values are:
 - a.) ±1.96
 - b.) ±2.575
 - c.) ±1.645
 - d) ±1.28

QUESTION 2 [10]

In a farming community, 30% of the farmers grow oranges only, 10% grow lemons only and 4% grow both oranges and lemons.

- 2.1) What proportion of farmers in the community grow either oranges or lemons? (3)
- 2.2) If a farmer is chosen randomly from these in the community, what is the probability that he grows neither oranges nor lemons? (3)
- 2.3) Of all the farmers who grow oranges, what proportion grow lemons also? (4)

QUESTION 3 [10]

In a particular year a car-manufacturing company produced 50 000 of a specific model. To keep costs down they produced the car in only three colours: red, white and pink. The number of cars produced in these colours were 20 000, 25 000and 5 000 respectively. Six months after this model went out of production it was discovered that the brake systems installed in 10 000 of these cars were faulty. Of the 10 000 with brake defects, 4 000 were white, 3 000 were red and 3 000 were pink.

- 3.1) If you purchased a pink car in this model what is the probability that it has a faulty brake system? (6)
- 3.2) Among which colour is the proportion of cars with faulty brakes the lowest? (4)

QUESTION 4 [25 Marks]

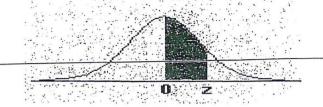
- 4.1 Research has shown that 12 patients visit a certain clinic in every 30 minutes. What is the probability that:
- 4.1.1) exactly 15 patients will visit the clinic in the next 30 minutes time? (3)
- 4.1.2) at most 5 patients will visit the clinic in the next 10 minutes time? (5)
- 4.1.3) at least 10 patients will visit the clinic in the next 1 hour time? (6)
- 4.2) A recent survey indicates that 90% of university lecturers run a private business in their spare time. Thus, in a random sample of 25 university lecturers, what is the probability that:
- 4.2.1) Exactly 20 of them run a private business in their spare time (3)
- 4.2.2) At least twenty of them run a private business in their spare time. (4)
- 4.2.3) At most twenty four of them run a private business in their spare time (4)

QUESTION 5 [25]

5.1) During April 2022, rainfall figures were recorded over nine farms in the Hardap Region.

FARM	А	В	С	D	Е	F	G	Н	ı
RAIN FALL (MM)	35	21	33	24	30	36	27	39	25

It is known that the population standard deviation for rainfall in the Hardap Region is 6.3 mm. Use the data above to construct a 99 % confidence interval estimate for the true unknown population mean rainfall in the Hardap Region. (10)


5.2) The asset turnovers, excluding cash and short-term investments, for the Super Spar Company from 2012 to 2021 are listed below (in \$mil):

2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
3.0	4.2	4.8	3.7	3.4	4.3	5.6	4.4	3.8	4.1

- 5.2.1) Determine the least squares trend line equation, using the sequential coding method with 2012 = 1. (9)
- 5.2.2) Use the trend line equation obtained in Question 5.2.1 to estimate turnovers for 2010 and 2024 (6)

END OF QUESTION PAPER

APPENDIX C: The Standard Normal Distribution

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

Standard Normal Distribution Tables

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.0000
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.0000
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.0001
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.0001
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.0002
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.0003
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.0005
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.0007
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.0010
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.0013
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.0019
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.0026
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.0035
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.0048
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.0063
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.0084
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.0110
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.0142
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.0183
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.0233
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.0293
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.0367
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.0455
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.0559
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.0681
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.0822
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.0985
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.1170
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.1378
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.1610
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.1867
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.2147
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.2451
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.2776
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.3120
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.3482
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.3859
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.4246
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.4641

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

-	STANDARD NORMAL DISTRIBUTION: Table values Represent AREA to the LEFT of the Z score.										
	Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
	0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
\ <u></u>	0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
	0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
	0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
	0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
	0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
	0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
	0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
	0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
	1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
	1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
	1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
	1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
	1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
	1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
	1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
	1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
	1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
	1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
	2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
	2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
	2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
	2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
	2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
	2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
	2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
	2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
	2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
	2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
	3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
	3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
	3.2	.99931	.99934	.99936	.99938	.99940	2.99942	.99944	.99946	.99948	.99950
	3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
	3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
	3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
	3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
	3.7	.99989	.99990	.99990.	.99990	.99991	.99991	.99992	.99992	.99992	.99992
	3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
	3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997